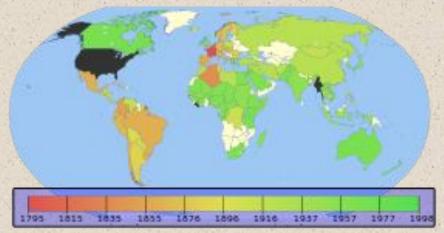
MUSEU DE TOPOGRAFIA PROF. LAUREANO IBRAHIM CHAFFE DEPARTAMENTO DE GEODÉSIA - UFRGS

SISTEMA INTERNACIONAL DE UNIDADES

Texto original: Wikipédia, a enciclopédia livre

Julho/2012

Ampliação e ilustrações: Iran Carlos Stalliviere Corrêa-IG/UFRGS


Sistema Internacional de Unidades (sigla SI do francês Système international d'unités) é a forma moderna do sistema métrico e é geralmente um sistema de unidades de medida concebido em torno de sete unidades básicas e da conveniência do número dez. É o sistema mais usado do mundo de medição, tanto no comércio como na ciência. O SI é um conjunto sistematizado e padronizado de definições para as unidades de medida, utilizado em quase todo o mundo moderno, que visa a uniformizar e facilitar as medições e as relações internacionais.

O antigo **sistema métrico** incluía vários grupos de unidades. O **SI** foi desenvolvido em 1960 a partir do antigo sistema metro-quilograma-segundo, ao invés do sistema centímetro-grama-segundo, que, por sua vez, teve algumas variações. O **SI** não é estático, as unidades são criadas e as definições são modificadas por meio de acordos

internacionais entre as várias nações que o adotam, conforme a tecnologia de medição avança e a precisão das medições aumenta.

O sistema tem sido quase universalmente adotado. Existe apenas três países que não o adotam: Myanmar, Libéria e Estados Unidos. O Reino Unido adotou oficialmente o Sistema Internacional de Unidades, mas não com a intenção de substituir totalmente as medidas habituais.

História

Países por data de metrificação. As cores do verde ao vermelho mostram o padrão do sistema métrico entre 1795-1998. A cor preta identifica os países que não adotaram o sistema métrico como o seu sistema primário de medição. A cor branca identifica os países que já utilizavam o sistema métrico no momento em que conquistaram a sua independência.

Para se efetuar medidas é necessário fazer uma padronização, escolhendo unidades para cada grandeza a ser medida. Antes da instituição do **Sistema Métrico Decimal** (no final do século XVIII, exatamente a 7 de Abril de 1795), as unidades de medida eram definidas de maneira arbitrária, variando de um país para outro, dificultando as transações comerciais e o intercâmbio científico entre eles.

As unidades de comprimento, por exemplo, eram quase sempre derivadas das partes do corpo do rei de cada país: a jarda, o pé, a polegada e outras. Até hoje, estas unidades são usadas nos Estados Unidos, embora definidas de uma maneira menos individual, mas através de padrões restritos às dimensões do meio em que vivem e não mais as variáveis desses indivíduos.

Em 20 de maio de 1875 um tratado internacional conhecido como **Convention du Mètre** (*Convenção do Metro*), foi assinado por 17 Estados. Este tratado estabeleceu as seguintes organizações para

conduzir as atividades internacionais em matéria de um sistema uniforme de medidas:

- Conférence Générale des Poids et Mesures (CGPM), uma conferência intergovernamental de delegados oficiais dos países membros e da autoridade suprema para todas as ações;
- Comité international des poids et mesures (CIPM), composto por cientistas e metrologistas, que preparam e executam as decisões da CGPM e é responsável pela supervisão do Bureau Internacional de Pesos e Medidas;
- Bureau International des Poids et mesures (BIPM), um laboratório permanente e centro mundial da metrologia científica, as atividades que incluem o estabelecimento de normas de base e as escalas das quantidades de capital físico e manutenção dos padrões protótipo internacional.

Até 1995, havia duas unidades *suplementares*: o **radiano** e o **esferorradiano** (*esterradiano*, em Portugal). Uma resolução da CGPM (*Conferência Geral de Pesos e Medidas*) de então tornou-as *derivadas*.

Unidades do SI

Básicas

Grandeza	Unidade	Símbolo
Comprimento	metro	m
Massa	quilograma	kg
Tempo	segundo	S
Corrente elétrica	ampère	Α
Temperatura termodinâmica	kelvin	K
Quantidade de matéria	mol	mol
Intensidade luminosa	candela	cd

Definiram-se **sete grandezas físicas** postas como básicas ou fundamentais. Por conseguinte, passaram a existir sete unidades básicas correspondentes — **as unidades básicas do SI** — descritas na tabela acima. A partir delas, podem-se derivar todas as outras unidades existentes.

Derivadas

Todas as unidades existentes podem ser derivadas das unidades básicas do **SI**. Entretanto, consideram-se unidades derivadas do **SI** apenas aquelas que podem ser expressas através das unidades básicas do **SI** e sinais de multiplicação e divisão, ou seja, sem qualquer fator

multiplicativo ou prefixo com a mesma função. Desse modo, há apenas uma unidade do **SI** para cada grandeza. Contudo, para cada unidade do **SI** pode haver várias grandezas. Às vezes, dão-se nomes especiais para as unidades derivadas.

Segue uma tabela com as **unidades SI derivadas** que recebem um nome especial e símbolo particular:

Grandeza	Unidade	Símbolo	Dimensional analítica	Dimensional sintética
Ângulo plano	radiano	rad	1	m/m
Ângulo sólido	esferorradiano	sr	1	m²/m²
Atividade catalítica	katal	kat	mol/s	
Atividade radioativa	becquerel	Bq	1/s	
Capacitância	farad	F	$A^2 \cdot s^2 \cdot s^2 / (kg \cdot m^2)$	A·s/V
Carga elétrica	coulomb	С	A⋅s	
Condutância	siemens	S	$A^2 \cdot s^3/(kg \cdot m^2)$	A/V
Densidade de fluxo magnético	tesla	Т	kg/(s²·A)	Wb/m²
Dose absorvida	gray	Gy	m²/s²	J/kg
Dose equivalente	sievert	Sv	m²/s²	J/kg
Energia	joule	J	kg·m²/s²	N∙m
Fluxo luminoso	lúmen	lm	cd	cd⋅sr
Fluxo magnético	weber	Wb	kg·m²/(s²·A)	V·s
Força	newton	N	kg·m/s²	
Freqüência	hertz	Hz	1/s	
Indutância	henry	Н	$kg \cdot m^2/(s^2 \cdot A^2)$	Wb/A
Luminosidade	lux	lx	cd/m²	lm/m ²
Potência	watt	W	kg⋅m²/s³	J/s
Pressão	pascal	Pa	kg/(m·s²)	N/m²
Resistência elétrica	ohm	Ω	$kg \cdot m^2/(s^3 \cdot A^2)$	V/A
Temperatura em Celsius	grau Celsius	°C		
Tensão elétrica	volt	V	kg·m²/(s³·A)	W/A

É fácil perceber que, em tese, é possíveis de se ter incontáveis ("infinitas") unidades derivadas do **SI** (por exemplo; m², m³, etc.), tantas quantas se possam imaginar com base nos princípios constitutivos fundamentais. As tabelas que se seguem não pretendem ser uma lista exaustiva. São, tão-somente, uma apresentação organizada, tabulada, das unidades do **SI** das principais grandezas, acompanhadas dos respectivos nomes e símbolos.

A primeira tabela, apresenta unidades que não fazem uso das unidades com nomes especiais:

Grandeza	Unidade	Símbolo
Área	metro quadrado	m²
Volume	metro cúbico	m³
Número de onda	por metro	1/m
Densidade de massa	quilograma por metro cúbico	kg/m³
Concentração	mol por metro cúbico	mol/m³
Volume específico	metro cúbico por quilograma	m³/kg
Velocidade	metro por segundo	m/s
Aceleração	metro por segundo ao quadrado	m/s²
Densidade de corrente	ampère por metro ao quadrado	A/m ²
Campo magnético	ampère por metro	A/m

A segunda tabela apresenta as que fazem uso na sua definição das unidades com nomes especiais.

Grandeza	Unidade	Símbolo	<u>Dimensional</u> analítica	<u>Dimensional</u> sintética
Velocidade angular	radiano por segundo	rad/s	1/s	Hz
Aceleração angular	radiano por segundo por segundo	rad/s²	1/s²	Hz²
Momento de força	newton metro	N∙m	kg·m²/s²	
Densidade de carga	coulomb por metro cúbico	C/m³	A·s/m³	
Campo elétrico	volt por metro	V/m	$kg \cdot m/(s^3 \cdot A)$	W/(A·m)
Entropia	joule por kelvin	J/K	$kg \cdot m^2/(s^2 \cdot K)$	N·m/K
Calor específico	joule por quilograma por kelvin	J/(kg·K)	m²/(s²·K)	N·m/(K·kg)
Condutividade térmica	watt por metro por kelvin	W/(m·K)	kg·m/(s³·K)	J/(s·m·K)
Intensidade de radiação	watt por esferorradiano	W/sr	kg·m²/(s³·sr)	J/(s·sr)

Unidades aceitas pelo SI

O SI aceita várias unidades que **não pertencem ao sistema**. As primeiras unidades deste tipo são unidades muito utilizadas no cotidiano:

Grandeza	Unidade	Símbolo	Relação com o SI
Tempo	minuto	min	1 min = 60 s
Tempo	hora	h	1 h = 60 min = 3600 s
Tempo	dia	d	1 d = 24 h = 86 400 s
Ângulo plano	grau	0	1° = п/180 rad
Ângulo plano	minuto	1	$1' = (1/60)^{\circ} = \pi/10 800 \text{ rad}$
Ângulo plano	segundo	II .	$1'' = (1/60)' = \pi/648\ 000\ rad$
Volume	litro	l ou L	1 l = 0,001 m ³
Massa	tonelada	t	1 t = 1000 kg
Argumento logarítmico ou Ângulo hiperbólico	neper	Np	1 Np = 1
Argumento logarítmico ou Ângulo hiperbólico	bel	В	1 B = 1

A relação entre o **neper** e o **bel** é: $1 B = 0.5 \ln(10) Np$. Outras unidades também são aceitas pelo **SI**, mas possuem uma relação com as unidades do **SI** determinada apenas por experimentos:

Grandeza	Unidade	Símbolo	Relação com o SI
Energia	elétron-volt	eV	1 eV=1,602 176 487(40) x 10 ⁻¹⁹ J
Massa	unidade de massa atômica	u	1 u=1,660 538 782(83) x 10 ⁻²⁷ kg
Comprimento	Unidade astronômica	ua	1 ua=1,495 978 706 91(30) x 10 ¹¹ m

Por fim, tem-se unidades que são aceitas temporariamente pelo **SI**. Seu uso é desaconselhado.

Grandeza	Unidade	Símbolo	Relação com o SI
Comprimento	milha marítima		1 milha marítima = 1852 m
Velocidade	nó		1 nó = 1 milha marítima por hora = 1852/3600 m/s
Área	are	a	$1 a = 100 m^2$
Área	hectare	ha	1 ha = 10 000 m ²
Área	acre		40,47 a
Área	barn	b	$1 b = 10^{-28} m^2$
Comprimento	ångström	Å	$1 \text{ Å} = 10^{-10} \text{ m}$
Pressão	bar	bar	1 bar = 100 000 Pa

Prefixos oficiais do SI

Os **prefixos do SI** permitem escrever quantidades sem o uso da notação científica, de maneira mais clara para quem trabalha em uma determinada faixa de valores. Os prefixos oficiais são:

10 ⁿ	Prefixo	Símbolo	Desde	Escala curta	Escala longa	Equivalente decimal
10 ²⁴	yotta	Υ	1991	Septilhão	Quadrilião	1 000 000 000 000 000 000 000 000
10 ²¹	zetta	Z	1991	Sextilhão	Milhar de trilião	1 000 000 000 000 000 000 000
10^{18}	exa	Е	1975	Quintilhão	Trilião	1 000 000 000 000 000 000
10^{15}	peta	P	1975	Quadrilhão	Milhar de bilião	1 000 000 000 000 000
10 ¹²	tera	Т	1960	Trilhão	Bilião	1 000 000 000 000
10 ⁹	giga	G	1960	Bilhão	Milhar de milhão	1 000 000 000
10 ⁶	mega	M	1960	Milhão	Milhão	1 000 000
10 ³	quilo	k	1795	Milhar	Milhar	1 000
10 ²	hecto	h	1795	Centena	Centena	100
10^{1}	deca	da	1795	Dezena	Dezena	10
10 ⁰	nenhum	nenhum		Unidade	Unidade	1
10-1	deci	d	1795	Décimo	Décimo	0,1
10-2	centi	С	1795	Centésimo	Centésimo	0,01
10 ⁻³	mili	m	1795	Milésimo	Milésimo	0,001
10 ⁻⁶	micro	μ (mu) ¹	1960	Milionésimo	Milionésimo	0,000 001
10-9	nano	n	1960	Bilionésimo	Milésimo de milionésimo	0,000 000 001
10 ⁻¹²	pico	p	1960	Trilionésimo	Bilionésimo	0,000 000 000 001
10-15	femto	f	1964	Quadrilionésimo	Milésimo de bilionésimo	0,000 000 000 000 001
10 ⁻¹⁸	atto	a	1964	Quintilionésimo	Trilionésimo	0,000 000 000 000 000 001
10-21	zepto	z	1991	Sextilionésimo	Milésimo de trilionésimo	0,000 000 000 000 000 001
10-24	yocto	У	1991	Septilionésimo	Quadrilionésimo	0,000 000 000 000 000 000 000 001

Para utilizá-los, basta juntar o prefixo aportuguesado e o nome da unidade, sem mudar a acentuação, como em nanometro, micrometro, miliampere e deciwatt. Para formar o símbolo, basta juntar os símbolos básicos: nm, µm, mA e dW.

Exceções

- Unidades segundo e radiano: é necessário dobrar o r e o s.
 Exemplos: milissegundo, decirradiano, etc.
- Especiais: múltiplos e submúltiplos do metro: quilômetro, hectômetro, decâmetro, decímetro, centímetro e milímetro; também nanômetro, picômetro, etc..

Observações

- O k usado em "quilo", em unidades como quilômetro (km) e quilograma (kg), deve ser grafado em letra minúscula. É errado escrevê-lo em maiúscula.
- Em informática, o símbolo "K" que pode preceder as unidades bits e bytes (grafado em letra maiúscula), não se refere ao fator multiplicativo 1000, mas sim a 1024 unidades da grandeza citada (para correção a IEC definiu o chamado prefixo binário onde 1:1024 e o uso dos prefixos da SI passaram a valer 1:1000).
- Em unidades como km² e km³ é comum ocorrerem erros de conversão. 1 km² = 1 000 000 m², porque 1 km × 1 km = 1 km², 1 km = 1000 m, 1000 m × 1000 m = 1 000 000 m². Para fazer conversões nesses casos, devem-se colocar mais dígitos por casa numérica: em metros, cada casa tem um dígito (exemplo: 1 0 0 0 m = 1 km); em metros quadrados (2), cada casa numérica tem dois dígitos (exemplo: 1000 m × 1000 m = 01 00 00 00 m² = 1 km²); em metros cúbicos (3), cada casa numérica tem três dígitos (exemplo: 1000 m × 1000 m = 001 000 000 000 m³ = 1 km³).

Escrita correta de unidades SI

Nome de unidade

O nome das unidades deve ser sempre escrito em letra minúscula.

Exemplos:

- Correto: quilograma, newton, metro cúbico.
- Exceção: quando o nome estiver no início da frase e em "grau Celsius"

Somente o nome da unidade aceita o plural

É importante saber que somente o nome da unidade de medida aceita o plural. As regras para a formação do plural (no Brasil) para o nome das unidades de medida seguem a Resolução Conmetro 12/88, conforme ilustrado abaixo:

Principais unidades SI

Principals unidades SI						
Grandeza	Nome	Plural	Símbolo			
comprimento	metro	metros	m			
área	metro quadrado	metros quadrados	m²			
volume	metro cúbico	metros cúbicos	m³			
ângulo plano	radiano	radianos	rad			
tempo	segundo	segundos	S			
freqüência	hertz	hertz	Hz			
velocidade	metro por segundo	metros por segundo	m/s			
aceleração	metro por segundo por segundo	metros por segundo por segundo	m/s²			
massa	quilograma	quilogramas	kg			
massa específica	quilograma por metro cúbico	quilogramas por metro cúbico	kg/m³			
vazão	metro cúbico por segundo	metros cúbicos por segundo	m³/s			
quantidade de matéria	mol	mols	mol			
força	newton	newtons	N			
pressão	pascal	pascals	Pa			
trabalho, energia quantidade de calor	joule	joules	J			
potência, fluxo de energia	watt	watts	W			
corrente elétrica	ampère	ampères	Α			
carga elétrica	coulomb	coulombs	С			
tensão elétrica	volt	volts	V			
resistência elétrica	ohm	ohms	Ω			
condutância	siemens	siemens	S			
capacitância	farad	farads	F			
temperatura Celsius	grau Celsius	graus Celsius	°C			
temp. termodinâmica	kelvin	kelvins	K			
intensidade luminosa	candela	candelas	cd			
fluxo luminoso	lúmen	lúmens	lm			
iluminamento	lux	lux	lx			

Algumas unidades em uso com o SI, sem restrição de prazo

Grandeza	Nome	Plural	Símbolo	Equivalência
volume	litro	litros	l ou L	0,001 m³
ângulo plano	grau	graus	0	π /180 rad
ângulo plano	minuto	minutos	,	π /10 800 rad
ângulo plano	segundo	segundos	, ,	π /648 000 rad
massa	tonelada	toneladas	t	1 000 kg
tempo	minuto	minutos	min	60 s
tempo	hora	horas	h	3 600 s
velocidade angular	rotação por minuto	rotações por minuto	rpm	π/30 rad/s
arigulai	poi minuto	por minuto		

Algumas unidades fora do SI, admitidas temporariamente

Grandeza	Nome	Plural	Símbolo	Equivalência
pressão	atmosfera	atmosferas	atm	101 325 Pa
pressão	bar	bars	bar	10 ⁵ Pa
pressão	milímetro de mercúrio	milímetros de mercúrio	mmHg	133,322 Pa aprox.
quantidade de calor	caloria	calorias	cal	4,186 8 J
área	hectare	hectares	ha	10 ⁴ m ²
força	quilograma- força	quilogramas- força	kgf	9,806 65 N
comprimento	milha marítima	milhas marítimas		1 852 m
velocidade	nó	nós		(1852/3600)m/

Para a pronúncia correta do nome das unidades, deve-se utilizar o acento tônico sobre a **unidade** e não sobre o **prefixo**.

- Exemplos: micrometro, hectolitro, milissegundo, centigrama, nanometro.
- Exceções: quilômetro, hectômetro, decâmetro, decímetro, centímetro e milímetro

Ao escrever uma unidade composta, não se deve misturar o nome com o símbolo da unidade.

	Certo	Errado
quilômetro por hora	km/h	quilômetro/h; km/hora
metro por segundo	m/s	metro/s; m/segundo

Símbolo de unidade

As unidades do **SI** podem ser escritas por seus nomes ou representadas por meio de símbolos.

Símbolo não é abreviatura.

É um sinal convencional e invariável utilizado para facilitar e universalizar a escrita e a leitura de significados — no caso, as unidades SI; logo, jamais deverá ser seguido de "ponto".

	Certo	Errado
segundo	S	s.; seg.
metro	m	m.; mtr.
quilograma	kg	kg.; kgr.
litro	L	l.;lts.
hora	h	h. ; hr.

Símbolo não admite plural

Símbolo *não admite* plural. Como sinal convencional e invariável que é, utilizado para facilitar e universalizar a escrita e a leitura de significados, nunca será seguido de "s".

	Certo	Errado
cinco metros	5 m	5 ms
dois quilogramas	2 kg	2 kgs
oito horas	8 h	8 hs

Representação


O resultado de uma medição deve ser representado com o valor numérico da medida, seguido de um espaço de até um caracter e, em seguida, o símbolo da unidade em questão.

Exemplo:

Para a unidade de temperatura **grau Celsius**, haverá um espaço de até um caractere entre o valor e a unidade, porém não se porá espaço entre o símbolo do grau e a letra C para formar a unidade "grau Celsius".

Exemplo:

Os símbolos das unidades de tempo hora (h), minuto (min) e segundo (s) são escritas com um espaço entre o valor medido e o símbolo. Também há um espaço entre o símbolo da unidade de tempo e o valor numérico seguinte.

Exemplo:

8 h 35 min 20 s espaços de até um caracter

Exceções

 Para os símbolo da unidade de ângulo plano grau (°), minuto(') e segundo("), não deve haver espaço entre o valor medido e as unidades, porém, deve haver um espaço entre o símbolo da unidade e o próximo valor numérico.

> 109° 28' 1'' espaços de até um caracter

Referências

- 1. http://www.nist.gov/ts/wmd/metric/upload/1136a.pdf
- 2. http://metricviews.org.uk/2010/01/will-the-european-commission-challenge-us-labelling-rules/
- 3. Resolution of the International Bureau of Weights and Measures establishing the International System of Units
- 4. Essentials of the SI: Introduction
- 5. INMETRO. *Sistema Internacional de Unidades SI*. 8. ed.(rev.) Rio de Janeiro, 2007. 114 p. http://www.inmetro.gov.br/infotec/publicacoes/Si.pdf. Último acesso em 10 de julho de 2012.
- 6. *Medidas de tempo*. Instituto Nacional de Metrologia, Normalização e Qualidade Industrial. Página visitada em 10 de julho de 2012.
- 7. INMETRO Unidades legais de medida. Último acesso em 7 de julho de 2012.
- 8. Museu de Metrologia O Sistema Internacional de Unidades (SI) Último acesso em 17 de junho de 2012.
- 9. Bureau International des Poids et Mesures
- 10. The NIST Reference for Constants, Units and Uncertainty